
HALOGEN CATALYZED ACETYLENIC OXY-COPE REARRANGEMENT IN N-METHYL-2-PYRROLIDONE SOLVENT A NEW INDUSTRIAL PROCESS FOR PSEUDOIONONE AND ITS ANALOGUES

Yoshiji Fujita^{*}, Takashi Onishi, Kenichi Hino¹⁾ and Takashi Nishida Central Research Laboratories, Kuraray Co. Ltd., Sakazu, Kurashiki, Okayama, Japan 710

<u>Summary</u>. Selective synthesis of pseudoionone was achieved by the acetylenic oxy-Cope rearrangement of 4-isopropenyl-3,7-dimethyl-6-octen-l-yn-3-ol $\begin{pmatrix} 1 \end{pmatrix}$ in N-methyl-2-pyrrolidone solvent containing a trace of hydrochloric acid, hydrobromic acid, iodine, ammonium bromide and ammonium chloride catalysts.

Recently we have developed a new industrial process for production of pseudoionone via acetylenic oxy-Cope rearrangement of <u>la</u>²⁾. As illustrated below, the thermolysis of la in neat system at 165 $^{\rm O}$ C for 5 hr under nitrogen atmosphere afforded a mixture of 2a+3a only in 45% yield (2a/3a=80/20). The main side reactions were the ene-reaction to yield 4 (25%) and the continued retro-ene reaction to yield $5_{-}(5\%)$. The previously reported modifications of 1,5-hexadien-3-ol system, such as siloxy-Cope³⁾ or anionic process⁴⁾ were of no use for increasing the yield of pseudoionone. The use of N-methyl-2-pyrrolidone (NMP) or DMSO solvent increased the yield of 2a+3a up to 68% and 72% respectively, with predominant formation of 2a. Unfortunately, however, the yield of ionone from 2a via acid catalyzed cyclization was extremely lower (50%) than from 3a (85%), which made it necessary to employ additional isomerization process of 2a-3a. In this report we wish to describe a selective one-pot synthesis of 3a from la via simultaneous acetylenic oxy-Cope rearrangement and double bond migration using NMP as solvent containing a trace of halogen catalysts.

1347

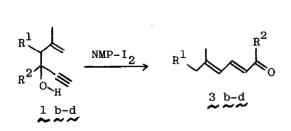
Rearrangement of $1a^{5}$ (0.1 mol) $[165^{\circ}C, 4 hr]$ in NMP solvent (twice by weight v.s. 1a) containing nickelacetylacetonate (1 mmol) which has been shown to be an excellent catalyst for isomerization of $2a \rightarrow 3a^{6}$ resulted in failure (2a/3a=15/85; 40%) with accompaniment of high boiling products. Then we investigated the reaction by using various halogen catalysts which have been reported to be efficient for double bond conjugation⁷. As represented in Table 1, the halogen catalyzed isomerization of $2a \rightarrow 3a$ proceeded selectively to give an equilibrium mixture of 2a/3a=3/97. Furthermore, the thermolysis of 1a (10 g) in NMP (30 g) containing 1N-HCl (0.35 ml) at $165^{\circ}C$ for 5 hr afforded pseudoionone (2a/3a=3/97) in ca. 73% selectivity. Time-variation of the ratio of 2a/3a clearly indicated that double bond migration proceeded concurrently with the rearrangement. Similar results were also obtained by using other halogen catalysts (Table 2).

Catalyst	Solvent ^a)	Reaction	Conversion	Selectivity	Ratio
(mol % v.s. 2a)	Solvent	condition	of 2a ^{b)} ; %	of <u>3a</u> b); %	of 2a/3a
I ₂ (1.0)	сн _з он	reflux 5 hr	97	100	3/97
(0.4)	NMP	165 ⁰ C, lhr	95	98	6/94
(0.2)	NMP	165 ⁰ C, 5 hr	82	98	20/80
NH ₄ I (1.0)	NMP	165 ⁰ C, 3 hr	85	82	30/70
NH ₄ Br (6.0)	с ₂ н ₅ он	reflux 2 hr	45	95	57/43
1N-HCl (0.5)	NMP	165 ⁰ C, 5 hr	98	99	4/96
0.4N-HBr (0.2)	NMP	165 ⁰ C, 3 hr	96	98	6/94

Table 1. Halogen catalyzed isomerization of $2a \rightarrow 3a$.

- a) Ratio of 23/solvent=5/15 (g).
- b) Conversion and selectivity were determined by G.L.C. Selectivity=[yield of 3a]/[conversion of 2a].

Table 2. Halogen catalyzed acetylenic oxy-Cope rearrangement of 1^{a} .


	Catalyst	Reaction	Conversion	Selectivity	Ratio
		time (hr)	of 1; %	of 2+3; % ^{b)}	of 2/3
✓ 0 1 NI b 1	1N-HC1 (0.35 ml)	1	62		37/63
		3	90	75	13/87
		5	95	73 (65) c)	3/97
	0.4N-HBr (0.27 ml)	1	66		26/74
		3	92	71	3/97
	I ₂ (50 mg)	4	92	70 (64) ^{c)}	4/96
	NH ₄ Cl (100 mg)	5	96	72	8/92
	NH ₄ Br (100 mg)	4	94	70	5/95
	I ₂ (50 mg)	4	96	83 (76) ^{c)}	3/97
	I ₂ (50 mg)	4	94	70 (65) ^{c)}	5/95
	I ₂ (50 mg)	4	96	69 (62) ^{C)}	5/95

a) A mixture of 1 (10 g) in NMP (30 g) solvent was heated at 165° C.

b) Selectivity=[yield of 2+3]/[conversion of 1].

c) Isolated yield after distillation.

This is the first example for selective one-pot synthesis of $\mathcal{A}_{p}^{p}, \mathcal{N}_{p}^{p}$ unsaturated carbonyl compound via acetylenic oxy-Cope rearrangement⁸), and the synthetic utility was confirmed by large scale production of pseudoionone 3a and by applications to the other systems of 1b-d.

$$\stackrel{\text{Lb}}{\sim}, R^{1} = CH_{3} - \stackrel{\text{CH}_{3}}{-C = C - CH_{2} -}; R^{2} = CH_{3} - \stackrel{\text{L}_{3}}{-CH_{3} -}; R^{2} = CH_{3} - \stackrel{\text{CH}_{3}}{-C} = CH_{2} -; R^{2} = CH_{3} - \stackrel{\text{CH}_{3}}{-C} = CH_{2} -; R^{2} = C_{2}H_{3} - \stackrel{\text{CH}_{3}}{-C} = CHCH_{2} -; R^{2} = C_{2}H_{3} - \stackrel{\text{CH}_{3}}{-C} = CHCH_{3} - CHCH_{3}$$

References and Notes

- Nakajo Plant, Kuraray Co. Ltd., Kurashiki-cho, Nakajo, Kitakanbara-gun, Niigata 959-26.
- 2) T. Onishi, Y. Fujita, T. Nishida, Synthesis, will be published.
- 3) R. W. Thies, J. C. S. Chem. Commun., 1971, 237.
- 4) D. A. Evans, A. M. Golob, J. Amer. Chem. Soc., <u>97</u>, 4765 (1975).
- 5) a) Y. Fujita, F. Wada, T. Onishi, T. Nishida, Chem. Lett., 1977, 943.
 b) Y. Fujita, S. Amiya, T. Onishi, T. Nishida, Bull. Chem. Soc. Jpn., 52, 1983 (1979).
- 6) T.Onishi, Y. Fujita, T. Nishida, Chem. Lett., 1979, 765.
- 7) S. Patai "The Chemistry of Alkenes", Chapter 7, p387, Interscience
 Publischers a division of John Wiley & Sons, New-York.
- A. Viola, J. H. Macmillan, J. Amer. Chem. Soc., 90, 6141 (1968); ibid, 92, 2404 (1970).

(Received in Japan 10 January 1980)